105 research outputs found

    Damping multi-model adaptive switching controller design for electronic air suspension system

    Get PDF
    This paper presents the design and verification of a damping multi-model adaptive switching controller for electronic air suspension (EAS) system. In order to improve the convergence rate of identification algorithm of conventional adaptive controller, multiple local linear full-car vehicle models of EAS system with fixed parameters are established according to the actual damping control process of EAS for different vehicle driving conditions and an adaptive model whose initial value of parameters can be re-assigned is introduced to enhance the system control precision. The model switching control strategy based on minimum error is used to select the best matching model online and the optimum damping force is regulated by adaptive control algorithm, thus constituting the damping multi-model adaptive control for EAS. Simulation results show that the control method proposed in this paper can improve the damping regulating performance of EAS effectively in wide range driving conditions, especially for the case of sudden change in driving conditions

    V2X-AHD:Vehicle-to-Everything Cooperation Perception via Asymmetric Heterogenous Distillation Network

    Full text link
    Object detection is the central issue of intelligent traffic systems, and recent advancements in single-vehicle lidar-based 3D detection indicate that it can provide accurate position information for intelligent agents to make decisions and plan. Compared with single-vehicle perception, multi-view vehicle-road cooperation perception has fundamental advantages, such as the elimination of blind spots and a broader range of perception, and has become a research hotspot. However, the current perception of cooperation focuses on improving the complexity of fusion while ignoring the fundamental problems caused by the absence of single-view outlines. We propose a multi-view vehicle-road cooperation perception system, vehicle-to-everything cooperative perception (V2X-AHD), in order to enhance the identification capability, particularly for predicting the vehicle's shape. At first, we propose an asymmetric heterogeneous distillation network fed with different training data to improve the accuracy of contour recognition, with multi-view teacher features transferring to single-view student features. While the point cloud data are sparse, we propose Spara Pillar, a spare convolutional-based plug-in feature extraction backbone, to reduce the number of parameters and improve and enhance feature extraction capabilities. Moreover, we leverage the multi-head self-attention (MSA) to fuse the single-view feature, and the lightweight design makes the fusion feature a smooth expression. The results of applying our algorithm to the massive open dataset V2Xset demonstrate that our method achieves the state-of-the-art result. The V2X-AHD can effectively improve the accuracy of 3D object detection and reduce the number of network parameters, according to this study, which serves as a benchmark for cooperative perception. The code for this article is available at https://github.com/feeling0414-lab/V2X-AHD

    Fuel Consumption Evaluation of Connected Automated Vehicles Under Rear-End Collisions

    Get PDF
    Connected automated vehicles (CAV) can increase traffic efficiency, which is considered a critical factor in saving energy and reducing emissions in traffic congestion. In this paper, systematic traffic simulations are conducted for three car-following modes, including intelligent driver model (IDM), adaptive cruise control (ACC), and cooperative ACC (CACC), in congestions caused by rear-end collisions. From the perspectives of lane density, vehicle trajectory and vehicle speed, the fuel consumption of vehicles under the three car-following modes are compared and analysed, respectively. Based on the vehicle driving and accident environment parameters, an XGBoost algorithm-based fuel consumption prediction framework is proposed for traffic congestions caused by rear-end collisions. The results show that compared with IDM and ACC modes, the vehicles in CACC car-following mode have the ideal performance in terms of total fuel consumption; besides, the traffic flow in CACC mode is more stable, and the speed fluctuation is relatively tiny in different accident impact regions, which meets the driving desires of drivers

    Learning Sequence Descriptor based on Spatiotemporal Attention for Visual Place Recognition

    Full text link
    Sequence-based visual place recognition (sVPR) aims to match frame sequences with frames stored in a reference map for localization. Existing methods include sequence matching and sequence descriptor-based retrieval. The former is based on the assumption of constant velocity, which is difficult to hold in real scenarios and does not get rid of the intrinsic single frame descriptor mismatch. The latter solves this problem by extracting a descriptor for the whole sequence, but current sequence descriptors are only constructed by feature aggregation of multi-frames, with no temporal information interaction. In this paper, we propose a sequential descriptor extraction method to fuse spatiotemporal information effectively and generate discriminative descriptors. Specifically, similar features on the same frame focu on each other and learn space structure, and the same local regions of different frames learn local feature changes over time. And we use sliding windows to control the temporal self-attention range and adpot relative position encoding to construct the positional relationships between different features, which allows our descriptor to capture the inherent dynamics in the frame sequence and local feature motion

    Vehicle Detection Based on Deep Dual-Vehicle Deformable Part Models

    Get PDF
    Vehicle detection plays an important role in safe driving assistance technology. Due to the high accuracy and good efficiency, the deformable part model is widely used in the field of vehicle detection. At present, the problem related to reduction of false positivity rate of partially obscured vehicles is very challenging in vehicle detection technology based on machine vision. In order to address the abovementioned issues, this paper proposes a deep vehicle detection algorithm based on the dual-vehicle deformable part model. The deep learning framework can be used for vehicle detection to solve the problem related to incomplete design and other issues. In this paper, the deep model is used for vehicle detection that consists of feature extraction, deformation processing, occlusion processing, and classifier training using the back propagation (BP) algorithm to enhance the potential synergistic interaction between various parts and to get more comprehensive vehicle characteristics. The experimental results have shown that proposed algorithm is superior to the existing detection algorithms in detection of partially shielded vehicles, and it ensures high detection efficiency while satisfying the real-time requirements of safe driving assistance technology

    VNI-Net: Vector Neurons-based Rotation-Invariant Descriptor for LiDAR Place Recognition

    Full text link
    LiDAR-based place recognition plays a crucial role in Simultaneous Localization and Mapping (SLAM) and LiDAR localization. Despite the emergence of various deep learning-based and hand-crafting-based methods, rotation-induced place recognition failure remains a critical challenge. Existing studies address this limitation through specific training strategies or network structures. However, the former does not produce satisfactory results, while the latter focuses mainly on the reduced problem of SO(2) rotation invariance. Methods targeting SO(3) rotation invariance suffer from limitations in discrimination capability. In this paper, we propose a new method that employs Vector Neurons Network (VNN) to achieve SO(3) rotation invariance. We first extract rotation-equivariant features from neighboring points and map low-dimensional features to a high-dimensional space through VNN. Afterwards, we calculate the Euclidean and Cosine distance in the rotation-equivariant feature space as rotation-invariant feature descriptors. Finally, we aggregate the features using GeM pooling to obtain global descriptors. To address the significant information loss when formulating rotation-invariant descriptors, we propose computing distances between features at different layers within the Euclidean space neighborhood. This greatly improves the discriminability of the point cloud descriptors while ensuring computational efficiency. Experimental results on public datasets show that our approach significantly outperforms other baseline methods implementing rotation invariance, while achieving comparable results with current state-of-the-art place recognition methods that do not consider rotation issues

    Visual Vehicle Tracking Based on Deep Representation and Semisupervised Learning

    Get PDF
    Discriminative tracking methods use binary classification to discriminate between the foreground and background and have achieved some useful results. However, the use of labeled training samples is insufficient for them to achieve accurate tracking. Hence, discriminative classifiers must use their own classification results to update themselves, which may lead to feedback-induced tracking drift. To overcome these problems, we propose a semisupervised tracking algorithm that uses deep representation and transfer learning. Firstly, a 2D multilayer deep belief network is trained with a large amount of unlabeled samples. The nonlinear mapping point at the top of this network is subtracted as the feature dictionary. Then, this feature dictionary is utilized to transfer train and update a deep tracker. The positive samples for training are the tracked vehicles, and the negative samples are the background images. Finally, a particle filter is used to estimate vehicle position. We demonstrate experimentally that our proposed vehicle tracking algorithm can effectively restrain drift while also maintaining the adaption of vehicle appearance. Compared with similar algorithms, our method achieves a better tracking success rate and fewer average central-pixel errors

    Hybrid model predictive control of damping multi-mode switching damper for vehicle suspensions

    Get PDF
    This paper investigates the design and verification of a hybrid model predictive controller of a damping multi-mode switching damper for application in vehicle suspensions. Since the damping mode switches induce different modes of operation, the vehicle suspension system including this damper poses challenging hybrid control problem. To solve this problem, a novel approach to the modelling and controller design problem is proposed based on hybrid modelling and model predictive control techniques. The vehicle suspension system with the damping multi-mode switching damper is formulated as a mixed logical dynamical model comprising continuous and discrete system inputs. Based on this model, a constrained optimal control problem is solved to manage the switching sequences of the damping mode with respect to the suspension performance requirements. Numerical simulation results demonstrate the effectiveness of the proposed control methodology finally
    corecore